### The Evolution of CT Fracturing Techniques in Western Canada

SPE ICOTA Roundtable October 20, 2011

John Ravensbergen





# Outline

- Industry Trends
- Overview of Different Techniques (with a focus on doing more with less)
  - Sandjet Perforating & Packer
  - Frac Sleeves
  - Straddle Systems
  - The Half Straddle<sup>TM</sup>



## Outline

- Process Efficiency
  - Reduce fluid consumption
  - More done in less time







### WCSB Industry Trends





### WCSB Industry Trends





## Packer & Sand Jet Perforating

- Broad market application since 2009
   ->1000 wells & 10,000 zones in WCSB
- Expanding into new markets
  Deeper Wells @ higher pressures
- "The most successful people are those who are good at Plan B" *James Yorke (1941-)* 
  - Process contingency for Screen Outs
  - Feedback to adapt on the fly



### Sand Jet Perforating & Packer



#### Packer & Perforating System

Run in hole, locate collars with Mechanical Casing Collar Locater (MCCL) Set BHA in the toe of the well

#### Packer and Perforating System

Circulate abrasive slurry through perforator (Fluid Volume =  $4 \text{ m}^3$ ) Circulate to slurry up the well away from perforations (Fluid Volume =  $2 \text{ m}^3$ )

#### Packer and Perforating System

Fluid Volumes (typical Bakken well) Pump fracture stimulation fluids down the annulus •

- Deadleg for Real Time Bottom Hole Pressure
- Annulus flow supports large Flow Rates

- Perforating =  $6 \text{ m}^3$
- $Pad = 5.5 m^3$
- Place Proppant =  $11 \text{ m}^3$
- $Flush = 5 m^3$
- Total/Stage =  $27.5 \text{ m}^3$ •

### CT Frac Sleeves

- Broad Market Application since 2010
   More than 5000 Stages in over 300 wells
- Refinement of the Packer and Sand Jet Perforating Technique
- Sand jet perforation tunnels replaced by the CT Frac Sleeves



#### **CT Frac Sleeve**



#### CT Frac Sleeve



Fluid Volumes (same typical Bakken well)

- Perforating =  $0 \text{ m}^3$
- Pad =  $5.5 \text{ m}^3$
- Proppant =  $11 \text{ m}^3$
- Flush =  $5 \text{ m}^3$
- Total/Stage =  $21.5 \text{ m}^3$



# Straddle System

- Market Application
  - Refrac existing wells
  - Add stages between existing stages
  - New well construction
    - Explosive Perforating, Burst Ports, Frac Sleeves
- Benefits
  - Complete zonal isolation
- Limitations
  - Pump frac down CT
  - Limited circulation capabilities (limited Plan Bs even for MacGyver)





# Straddle System

- Fluid Volumes
  - Perforating =  $0 \text{ m}^3$
  - Pad =  $8 \text{ m}^3$  (CT Volume)
  - Proppant =  $11 \text{ m}^3$
  - Flush =  $0 \text{ m}^3$
  - Total/Stage =  $19 \text{ m}^3$



## Half Straddle<sup>TM</sup>

- Modification of Packer & Sand Jet Perforating Technique
- Frac Stimulation Fluid pumped down the CT
- Sand Jet Perforator replaced with frac sub
- Use with Frac Sleeves (perforating not required)
- Similar to Straddle BHA technique without the top cup



## Half Straddle<sup>TM</sup> Technique



#### **Fluid Volume Comparison Summary**

| Frac Technique                                                         | Fluid<br>Savings<br>Stage<br>Volume<br>m <sup>3</sup> | Fluid Savings<br>x 25 Stages<br>m <sup>3</sup> | Fluid<br>Reduction<br>% | % Time<br>per Stage * |
|------------------------------------------------------------------------|-------------------------------------------------------|------------------------------------------------|-------------------------|-----------------------|
| Half Straddle <sup>TM</sup><br>VS.<br>Packer & Sand<br>Jet Perforating | 14.5                                                  | 363                                            | 47%                     | 44%                   |
| Half Straddle <sup>TM</sup><br>vs.<br>CT Frac Sleeves                  | 8.5                                                   | 213                                            | 39%                     | 72%                   |
| Half Straddle <sup>TM</sup><br>VS.<br>Conventional<br>Straddle         | б                                                     | 150                                            | 31%                     | 79%                   |

\* No unplanned events



## Conclusions

- CT is having a significant impact on creating new and improving processes for multi-stage fracturing techniques
  - Time savings and fluid reductions
  - Improving productivity



## Questions?



- ICOTA
- NCS Oilfield Services
- Geo Webworks Inc.





